Assessing The Role of Intraoperative Neurophysiological Monitoring (IONM) in Preserving Pelvic Floor Integrity During High-Risk Surgeries

Authors

DOI:

https://doi.org/10.5281/zenodo.15376879

Keywords:

Cauda Equina, Tethered Cord Release, Hysterectomy, Colorectal, Urological, External Urinary Sphincters, External Anal Sphincters, Pelvic Floor, multimodality, IONM, SSEP, MEP, EMG, BCR, pudendal, surgery

Abstract

Introduction: Neural injuries during gynecological, urological, colorectal, and spinal surgeries affecting pelvic structures can result in life-altering dysfunction affecting bladder, bowel, and sexual health. Intraoperative neurophysiological monitoring (IONM) is a promising approach to mitigate surgical risks. We hypothesized that IONM could reduce postoperative deficits, maintain pelvic functions, and enhance improvement rates for high-risk procedures.

Methods: A systematic review of databases, including PubMed, ScienceDirect, and Scopus (1965-2024), was conducted per PRISMA guidelines. The IONM search included terms like "external urinary sphincter monitoring," "bladder EMG," "bladder motor evoked potential," "BCR," and "pudendal nerve SSEP." The non-IONM search encompassed keywords such as "hysterectomy," "colorectal surgery," "cauda equina surgeries," and "tethered cord release."

Results: Statistical analysis focused on spinal-related procedures due to insufficient comparative data in urological, colorectal, and gynecological subsections. Analysis included 771 patients, 482 receiving IONM, and 289 without IONM. Chi-square testing showed statistically significant variations in outcome distributions (p < 0.0001 for improvement, baseline maintenance, and deterioration). The odds ratio of 0.32 shows that IONM patients were 68% less likely to improve postoperatively, an unexpected finding requiring interpretation. Odds ratio for baseline function was 4.42, indicating that IONM patients were over four times more likely to maintain baseline function. IONM correlated with a 67% reduction in neurological deterioration risk.

Discussion: Our findings confirm that multimodality IONM is reliable for preserving neural function during high-risk surgeries. Lower improvement rates likely reflect its application in complex cases. Significant literature gaps persist regarding standardized pelvic-specific IONM protocols; future research is necessary.​​​​​​​​​​​​​​​​

References

C. Cejas and M. Serra, “High-Resolution MR Neurography Anatomy of the Sacral Plexus,” in Surgical Anatomy of the Sacral Plexus and Its Branches, Elsevier, 2021, pp. 205–223. doi: 10.1016/B978-0-323-77602-8.00020-9.

“Normal Plexus and Nerve Anatomy,” in Imaging in Spine Surgery, Elsevier, 2017, pp. 414–417. doi: 10.1016/B978-0-323-48554-8.50255-4.

V. Ahuja, “Open Surgical Techniques in Colorectal Cancer,” in Early Diagnosis and Treatment of Cancer Series: Colorectal Cancer, Elsevier, 2011, pp. 145–165. doi: 10.1016/B978-1-4160-4686-8.50019-1.

W. Irvin, W. Andersen, P. Taylor, and L. Rice, “Minimizing the risk of neurologic injury in gynecologic surgery,” Obstet. Gynecol., vol. 103, no. 2, pp. 374–382, Feb. 2004, doi: 10.1097/01.AOG.0000110542.53489.c6.

R. Schuler et al., “A new method of intraoperative pelvic neuromonitoring: a preclinical feasibility study in a porcine model,” Sci. Rep., vol. 12, no. 1, p. 3696, Mar. 2022, doi: 10.1038/s41598-022-07576-8.

D. W. Kauff, K. Kronfeld, S. Gorbulev, D. Wachtlin, H. Lang, and W. Kneist, “Continuous intraoperative monitoring of pelvic autonomic nerves during TME to prevent urogenital and anorectal dysfunction in rectal cancer patients (NEUROS): a randomized controlled trial,” BMC Cancer, vol. 16, p. 323, May 2016, doi: 10.1186/s12885-016-2348-4.

E. Katharina Ritzl, “Is intraoperative neuromonitoring a good idea in my practice?,” Neurol. Clin. Pract., vol. 2, no. 2, pp. 146–150, Jun. 2012, doi: 10.1212/CPJ.0b013e31825a7837.

J. R. Toleikis, C. Pace, F. R. Jahangiri, L. B. Hemmer, and S. C. Toleikis, “Intraoperative somatosensory evoked potential (SEP) monitoring: an updated position statement by the American Society of Neurophysiological Monitoring,” J. Clin. Monit. Comput., vol. 38, no. 5, pp. 1003–1042, Oct. 2024, doi: 10.1007/s10877-024-01201-x.

A. Macrì, G. Badessi, C. Mazzeo, M. Galati, E. Cucinotta, and V. Rizzo, “Technique of neuromonitoring during pelvic peritonectomy,” Pleura Peritoneum, vol. 5, no. 3, Aug. 2020, doi: 10.1515/pp-2020-0132.

“Guideline eleven: guidelines for intraoperative monitoring of sensory evoked potentials. American Electroencephalographic Society,” J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc., vol. 11, no. 1, pp. 77–87, Jan. 1994.

A. Macrì, G. Badessi, C. Mazzeo, M. Galati, E. Cucinotta, and V. Rizzo, “Technique of neuromonitoring during pelvic peritonectomy,” Pleura Peritoneum, vol. 5, no. 3, Aug. 2020, doi: 10.1515/pp-2020-0132.

B. A. Cohen, M. R. Major, and B. A. Huizenga, “Pudendal nerve evoked potential monitoring in procedures involving low sacral fixation,” Spine, vol. 16, no. 8 Suppl, pp. S375-378, Aug. 1991.

A. Baker and J. Widrich, “Somatosensory Evoked Potentials,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025. Accessed: Apr. 16, 2025. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK544358/

G. Guzzi et al., “Intraoperative Neurophysiological Monitoring in Neurosurgery,” J. Clin. Med., vol. 13, no. 10, p. 2966, May 2024, doi: 10.3390/jcm13102966.

H. Ushirozako et al., “Transcranial Motor Evoked Potential Monitoring for the Detection of Nerve Root Injury during Adult Spinal Deformity Surgery,” Asian Spine J., vol. 12, no. 4, pp. 639–647, Aug. 2018, doi: 10.31616/asj.2018.12.4.639.

A. D. Legatt et al., “ACNS Guideline: Transcranial Electrical Stimulation Motor Evoked Potential Monitoring,” J. Clin. Neurophysiol., vol. 33, no. 1, pp. 42–50, Feb. 2016, doi: 10.1097/WNP.0000000000000253.

E. B. Kale, M. W. Lutz, and A. M. Husain, “Motor Evoked Potentials Double Train Stimulation: Optimal Number of Pulses per Train,” J. Clin. Neurophysiol., vol. 39, no. 5, pp. 401–405, Jul. 2022, doi: 10.1097/WNP.0000000000000793.

S. Siller, A. Sixta, J.-C. Tonn, and A. Szelenyi, “Feasibility of multimodal intraoperative neurophysiological monitoring for extramedullary spinal cord tumor surgery in elderly patients,” Acta Neurochir. (Wien), vol. 165, no. 8, pp. 2089–2099, Jun. 2023, doi: 10.1007/s00701-023-05682-8.

K. Turan et al., “Intraoperative Neurophysiological Monitoring in Total Hip Arthroplasty for Crowe Types 3 and 4 Hips,” Clin. Orthop. Surg., vol. 15, no. 5, p. 711, 2023, doi: 10.4055/cios22371.

H. Ushirozako et al., “Transcranial Motor Evoked Potential Monitoring for the Detection of Nerve Root Injury during Adult Spinal Deformity Surgery,” Asian Spine J., vol. 12, no. 4, pp. 639–647, Aug. 2018, doi: 10.31616/asj.2018.12.4.639.

H. Ushirozako et al., “Transcranial Motor Evoked Potential Monitoring for the Detection of Nerve Root Injury during Adult Spinal Deformity Surgery,” Asian Spine J., vol. 12, no. 4, pp. 639–647, Aug. 2018, doi: 10.31616/asj.2018.12.4.639.

D. W. Kauff, K. Kronfeld, S. Gorbulev, D. Wachtlin, H. Lang, and W. Kneist, “Continuous intraoperative monitoring of pelvic autonomic nerves during TME to prevent urogenital and anorectal dysfunction in rectal cancer patients (NEUROS): a randomized controlled trial,” BMC Cancer, vol. 16, no. 1, p. 323, Dec. 2016, doi: 10.1186/s12885-016-2348-4.

W. Kneist et al., “Pelvic Intraoperative Neuromonitoring Prevents Dysfunction in Patients With Rectal Cancer: Results From a Multicenter, Randomized, Controlled Clinical Trial of a NEUROmonitoring System (NEUROS),” Ann. Surg., vol. 277, no. 4, pp. e737–e744, Apr. 2023, doi: 10.1097/SLA.0000000000005676.

L. Murena, G. Colin, M. Dussi, and G. Canton, “Is intraoperative neuromonitoring effective in hip and pelvis orthopedic and trauma surgery? A systematic review,” J. Orthop. Traumatol., vol. 22, no. 1, p. 40, Dec. 2021, doi: 10.1186/s10195-021-00605-8.

A. Crocoli et al., “Intraoperative Neuromonitoring for Pediatric Pelvic Tumors,” Front. Pediatr., vol. 10, p. 949037, Aug. 2022, doi: 10.3389/fped.2022.949037.

J. Day, J. Saldino, M. Singh, and D. Gruber, “Femoral Nerve Monitoring During Lateral Spine Surgery,” Nov. 2023, doi: 10.5281/ZENODO.10215106.

S. J. Brull and D. G. Silverman, “Pulse Width, Stimulus Intensity, Electrode Placement, and Polarity during Assessment of Neuromuscular Block,” Anesthesiology, vol. 83, no. 4, pp. 702-709., Oct. 1995, doi: 10.1097/00000542-199510000-00009.

J. Day, J. Saldino, M. Singh, and D. Gruber, “Femoral Nerve Monitoring During Lateral Spine Surgery,” Nov. 2023, doi: 10.5281/ZENODO.10215106.

L. Murena, G. Colin, M. Dussi, and G. Canton, “Is intraoperative neuromonitoring effective in hip and pelvis orthopedic and trauma surgery? A systematic review,” J. Orthop. Traumatol., vol. 22, no. 1, p. 40, Dec. 2021, doi: 10.1186/s10195-021-00605-8.

V. Deletis and D. B. Vodusek, “Intraoperative Recording of the Bulbocavernosus Reflex:,” Neurosurgery, vol. 40, no. 1, pp. 88–93, Jan. 1997, doi: 10.1097/00006123-199701000-00019.

J. Choi et al., “Advancing Intraoperative Neurophysiological Monitoring With Human Reflexes,” J. Clin. Neurol., vol. 20, no. 2, p. 119, 2024, doi: 10.3988/jcn.2023.0416.

P. Bouju et al., “Clinical assessment and train-of-four measurements in critically ill patients treated with recommended doses of cisatracurium or atracurium for neuromuscular blockade: a prospective descriptive study,” Ann. Intensive Care, vol. 7, no. 1, p. 10, Dec. 2017, doi: 10.1186/s13613-017-0234-0.

T. Yang, K. Jin, D. Kong, Y. Wang, J. Lu, and X. Liu, “Intraoperative bulbocavernosus reflex monitoring for predicting postoperative voiding dysfunction in patients with distal intraspinal tumors,” J. Clin. Neurosci., vol. 129, p. 110865, Nov. 2024, doi: 10.1016/j.jocn.2024.110865.

F. R. Jahangiri, R. A. Asdi, I. Tarasiewicz, and M. Azzubi, “Intraoperative Triggered Electromyography Recordings from the External Urethral Sphincter Muscles During Spine Surgeries,” Cureus, Jun. 2019, doi: 10.7759/cureus.4867.

F. R. Jahangiri et al., “Motor Evoked Potential Recordings from the Urethral Sphincter Muscles (USMEPs) during Spine Surgeries,” Neurodiagnostic J., vol. 59, no. 1, pp. 34–44, Jan. 2019, doi: 10.1080/21646821.2019.1572375.

J. R. Gleave and R. MacFarlane, “Prognosis for recovery of bladder function following lumbar central disc prolapse,” Br. J. Neurosurg., vol. 4, no. 3, pp. 205–209, 1990, doi: 10.3109/02688699008992725.

A. Koht, TB. Sloan, and LB. Hemmer, “Neuromonitoring in Surgery and Anesthesia,” UpToDate, Nov. 2024.

M. R. Nuwer, A. M. Husain, and F. Soto, “Overview of intraoperative neuromonitoring,” in Handbook of Clinical Neurology, vol. 186, Elsevier, 2022, pp. 3–9. doi: 10.1016/B978-0-12-819826-1.00011-9.

R. Schuler et al., “Automatic muscle impedance and nerve analyzer (AMINA) as a novel approach for classifying bioimpedance signals in intraoperative pelvic neuromonitoring,” Sci. Rep., vol. 14, no. 1, p. 654, Jan. 2024, doi: 10.1038/s41598-023-50504-7.

G. Kalev et al., “Intraoperative pelvic neuromonitoring based on bioimpedance signals: a new method analyzed on 30 patients,” Langenbecks Arch. Surg., vol. 409, no. 1, p. 237, Aug. 2024, doi: 10.1007/s00423-024-03403-y.

D. W. Kauff, K. P. Koch, K. P. Hoffmann, H. Lang, and W. Kneist, “Minimal Invasive Pelvic Neuromonitoring – Technical Demands and Requirements,” Biomed. Eng. Biomed. Tech., Jan. 2013, doi: 10.1515/bmt-2013-4369.

R. Schuler et al., “Technical aspects of a new approach to intraoperative pelvic neuromonitoring during robotic rectal surgery,” Sci. Rep., vol. 13, no. 1, p. 17156, Oct. 2023, doi: 10.1038/s41598-023-41859-y.

W. Kneist et al., “Pelvic Intraoperative Neuromonitoring Prevents Dysfunction in Patients With Rectal Cancer: Results From a Multicenter, Randomized, Controlled Clinical Trial of a NEUROmonitoring System (NEUROS),” Ann. Surg., vol. 277, no. 4, pp. e737–e744, Apr. 2023, doi: 10.1097/SLA.0000000000005676.

A. O’Connor et al., “Diagnostic accuracy of intraoperative pelvic autonomic nerve monitoring during rectal surgery: a systematic review,” Tech. Coloproctology, vol. 29, no. 1, p. 8, Dec. 2025, doi: 10.1007/s10151-024-03043-w.

L. Murena, G. Colin, M. Dussi, and G. Canton, “Is intraoperative neuromonitoring effective in hip and pelvis orthopedic and trauma surgery? A systematic review,” J. Orthop. Traumatol., vol. 22, no. 1, p. 40, Dec. 2021, doi: 10.1186/s10195-021-00605-8.

A. Macrì, G. Badessi, C. Mazzeo, M. Galati, E. Cucinotta, and V. Rizzo, “Technique of neuromonitoring during pelvic peritonectomy,” Pleura Peritoneum, vol. 5, no. 3, Aug. 2020, doi: 10.1515/pp-2020-0132.

A. Singh, M. Kaur, P. Sains, M. Baig, C. Swaminathan, and M. Sajid, “FTP3.3 Pelvic intraoperative neuromonitoring during anterior or abdominoperineal resections: a critical appraisal of published studies by meta-analysis,” Br. J. Surg., vol. 110, no. Supplement_6, p. znad241.355, Aug. 2023, doi: 10.1093/bjs/znad241.355.

J. P. Ney, D. N. Van Der Goes, and J. H. Watanabe, “Cost-effectiveness of intraoperative neurophysiological monitoring for spinal surgeries: Beginning steps,” Clin. Neurophysiol., vol. 123, no. 9, pp. 1705–1707, Sep. 2012, doi: 10.1016/j.clinph.2012.01.020.

J. Garces, J. F. Berry, E. P. Valle-Giler, and W. A. R. Sulaiman, “Intraoperative neurophysiological monitoring for minimally invasive 1- and 2-level transforaminal lumbar interbody fusion: does it improve patient outcome?,” Ochsner J., vol. 14, no. 1, pp. 57–61, 2014.

T. Kombos, O. Suess, and M. Brock, “Kostenanalyse des intraoperativen neurophysiologischen Monitorings (IOM),” Zentralblatt Für Neurochir., vol. 63, no. 04, pp. 141–145, Jan. 2003, doi: 10.1055/s-2002-36434.

J. D. Ament, A. Leon, K. D. Kim, J. P. Johnson, and A. Vokshoor, “Intraoperative neuromonitoring in spine surgery: large database analysis of cost-effectiveness,” North Am. Spine Soc. J., vol. 14, p. 100206, Jun. 2023, doi: 10.1016/j.xnsj.2023.100206.

T. N. Pajewski, V. Arlet, and L. H. Phillips, “Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon,” Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc., vol. 16 Suppl 2, no. Suppl 2, pp. S115-129, Nov. 2007, doi: 10.1007/s00586-007-0419-6.

J. P. Wilson, J. B. Vallejo, D. Kumbhare, B. Guthikonda, and S. Hoang, “The Use of Intraoperative Neuromonitoring for Cervical Spine Surgery: Indications, Challenges, and Advances,” J. Clin. Med., vol. 12, no. 14, p. 4652, Jul. 2023, doi: 10.3390/jcm12144652.

J. Decruz, A.-K. Kaliya-Perumal, K. H.-Y. Wong, D. S. Kumar, E. W. Yang, and J. Y.-L. Oh, “Neuromonitoring in Cervical Spine Surgery: When Is a Signal Drop Clinically Significant?,” Asian Spine J., vol. 15, no. 3, pp. 317–323, Jun. 2021, doi: 10.31616/asj.2020.0074.

J.-H. Park, “Intraoperative neurophysiological monitoring in spinal surgery,” World J. Clin. Cases, vol. 3, no. 9, p. 765, 2015, doi: 10.12998/wjcc.v3.i9.765.

P. Velayutham, V. T. Cherian, V. Rajshekhar, and K. S. Babu, “The effects of propofol and isoflurane on intraoperative motor evoked potentials during spinal cord tumour removal surgery - A prospective randomised trial,” Indian J. Anaesth., vol. 63, no. 2, pp. 92–99, Feb. 2019, doi: 10.4103/ija.IJA_421_18.

J. Y. Lee, B. G. Lim, and I. O. Lee, “Progressive enhancement of motor-evoked potentials during general anesthesia: the phenomenon of ‘anesthetic fade-in,’” J. Neurosurg. Anesthesiol., vol. 25, no. 1, pp. 87–89, Jan. 2013, doi: 10.1097/ANA.0b013e3182716426.

J. E. Bible and M. Goss, “To Use or Not Use Intraoperative Neuromonitoring: Utilization of Neuromonitoring During Spine Surgeries and Associated Conflicts of Interest, a Cross-Sectional Survey Study,” J. Am. Acad. Orthop. Surg. Glob. Res. Rev., vol. 6, no. 3, p. e21.00273, Mar. 2022, doi: 10.5435/JAAOSGlobal-D-21-00273.

J. H. Badhiwala et al., “Investigating the utility of intraoperative neurophysiological monitoring for anterior cervical discectomy and fusion: analysis of over 140,000 cases from the National (Nationwide) Inpatient Sample data set,” J. Neurosurg. Spine, vol. 31, no. 1, pp. 76–86, Jul. 2019, doi: 10.3171/2019.1.SPINE181110.

Downloads

Published

2025-05-09

How to Cite

Chung, S., Nah, E., Ejaz, M. U., Anees, S., Mohammad Habib, S., Ezhil, V., Garza, M., Khan, I., & Jahangiri, F. R. (2025). Assessing The Role of Intraoperative Neurophysiological Monitoring (IONM) in Preserving Pelvic Floor Integrity During High-Risk Surgeries. J of Neurophysiological Monitoring, 3(2), 31–68. https://doi.org/10.5281/zenodo.15376879

Most read articles by the same author(s)

1 2 > >>