Enhancing the Effectiveness of Monitoring the Robust Bulbocavernosus Reflex in Cauda Equina Surgeries: Harnessing Machine Learning to Decode the Complexity of Stimulation Parameters
DOI:
https://doi.org/10.5281/zenodo.14516690Keywords:
Bulbocavernosus reflex, BCR, IONM, multimodality, BCR technique, BCR parameter, efficacy of BCR, cauda equina, surgery, pudendalAbstract
Cauda equina surgeries present significant challenges due to pathological diversity and anatomical variability, particularly in pediatric cases involving tethered spinal cord syndrome, lumbosacral spinal tumors, and congenital deformities. The Bulbocavernosus Reflex (BCR), mediated by the S2–S4 sacral segments, is an efficient multimodality intraoperative neurophysiological monitoring (IONM) tool for preserving sacral neural pathways during these complex procedures. Since its introduction in the IONM arena in the late 1990s, the efficacy of BCR in preventing pelvic neural deficits was gradually established. At the same time, advancements in IONM technology over the decades fostered its widespread and reliable utility. Despite evidence-based advantages, achieving robust BCR monitorability remains challenging due to highly variable stimulation parameters. Standardized protocols can provide a pathway to enhance its potential by enabling widespread adaptability and ensuring consistent neuromonitoring outcomes. A systematic meta-analysis was performed across relevant databases, focusing on studies utilizing BCR as a multimodality IONM during spinal surgeries. The analysis primarily aimed to establish a feasible set of BCR stimulation parameters to enhance monitorability alongside an evaluation of the sensitivity and specificity of BCR in preventing genitourinary postoperative deficits. AI machine learning tools were also employed to determine stimulation parameter combinations associated with 100% monitorability, providing insights into optimal protocols. Optimal BCR monitorability (100%) was consistently achieved with stimulation intensity of 40–50 mA, pulse counts of 4–8, pulse durations between 0.1–0.5 ms, and interstimulus intervals (ISI) of 2–3 ms, reflecting the critical role of not only stimulation intensity but also the synergistically interdependent dynamics of involved parameters, including temporal dynamics. Broad intensity ranges paired with shorter pulse durations and higher pulse counts effectively enhanced neural activation, underscoring the craft of devising a precise set of stimulation parameters essential for achieving reliable monitorability. Machine learning analysis identified stimulation intensity and pulse count as the most influential predictors of monitorability, explaining 69.25% of the variance and providing key insights for optimizing stimulation protocols. BCR monitoring is pivotal in preserving sacral nerve integrity and minimizing postoperative deficits. Advancing parameter optimization within IONM protocols ensures improved monitorability, enhancing surgical precision and patient outcomes.
References
Sala F, Skrap B, Kothbauer KF, Deletis V. Intraoperative neurophysiology in intramedullary spinal cord tumor surgery. Handb Clin Neurol [Internet]. 2022;186:229–44. http://dx.doi.org/10.1016/B978-0-12-819826-1.00019-3
Skinner SA, Vodušek DB. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol [Internet]. 2014;31(4):313–22. http://dx.doi.org/10.1097/WNP.0000000000000054
Shinjo T, Hayashi H, Takatani T, Boku E, Nakase H, Kawaguchi M. Intraoperative feasibility of bulbocavernosus reflex monitoring during untethering surgery in infants and children. J Clin Monit Comput [Internet]. 2018;33(1):155–63. http://dx.doi.org/10.1007/s10877-018-0127-2
Skinner S, Chiri CA, Wroblewski J, Transfeldt EE. Enhancement of the bulbocavernosus reflex during intraoperative neurophysiological monitoring through the use of double train stimulation: a pilot study. J Clin Monit Comput [Internet]. 2007;21(1):31–40. http://dx.doi.org/10.1007/s10877-006-9055-7
Taskiran E, Ulu MO, Akcil EF, Hanci M. Intraoperative neuromonitoring in surgery of cauda equina and Conus medullaris tumors. Turk Neurosurg [Internet]. 2019;29(6):909–14. http://dx.doi.org/10.5137/1019-5149.JTN.26479-19.2
Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst [Internet]. 2013;29(9):1611–24. http://dx.doi.org/10.1007/s00381-013-2188-3
Choi J, Kim J-S, Hyun S-J, Kim K-J, Park KS. Efficacy of intraoperative bulbocavernosus reflex monitoring for the prediction of postoperative voiding function in adult patients with lumbosacral spinal tumor. J Clin Monit Comput [Internet]. 2021;36(2):493–9. http://dx.doi.org/10.1007/s10877-021-00678-0
Previnaire JG. The importance of the bulbocavernosus reflex. Spinal Cord Ser Cases [Internet]. 2018;4:2. http://dx.doi.org/10.1038/s41394-017-0012-0
Choi J, Kim J-S, Hyun S-J, Kim K-J, Kim H-J, Deletis V, et al. Intraoperative bulbocavernosus reflex monitoring in posterior lumbar fusion surgery. Clin Neurophysiol [Internet]. 2022;144:59–66. http://dx.doi.org/10.1016/j.clinph.2022.09.020
Rodi Z, Vodusek DB. Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol [Internet]. 2001;112(5):879–83. http://dx.doi.org/10.1016/s1388-2457(01)00500-4
Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery [Internet]. 1997;40(1):88–92; discussion 92-3. http://dx.doi.org/10.1097/00006123-199701000-00019
Hwang H, Wang K-C, Bang MS, Shin H-I, Kim S-K, Phi JH, et al. Optimal stimulation parameters for intraoperative bulbocavernosus reflex in infants. J Neurosurg Pediatr [Internet]. 2017;20(5):464–70. http://dx.doi.org/10.3171/2017.6.PEDS16664
Hayashi H, Shinjo T, Takatani T, Shigematsu H, Uemura K, Oi A, et al. Transurethral electrical stimulation for intraoperative bulbocavernosus reflex monitoring during spine surgery in females. Clin Neurophysiol [Internet]. 2022;141:9–14. http://dx.doi.org/10.1016/j.clinph.2022.06.009
Morota N. Intraoperative neurophysiological monitoring of the bulbocavernosus reflex during surgery for conus spinal lipoma: what are the warning criteria? J Neurosurg Pediatr [Internet]. 2019;23(5):639–47. http://dx.doi.org/10.3171/2018.12.PEDS18535
Cha S, Wang K-C, Park K, Shin H-I, Lee JY, Chong S, et al. Predictive value of intraoperative bulbocavernosus reflex during untethering surgery for post-operative voiding function. Clin Neurophysiol [Internet]. 2018;129(12):2594–601. http://dx.doi.org/10.1016/j.clinph.2018.09.026
Overzet K, Jahangiri FR, Funk R. Bulbocavernosus reflex monitoring during intramedullary Conus tumor surgery. Cureus [Internet]. 2020;12(3):e7233. http://dx.doi.org/10.7759/cureus.7233
Ghatol D, Widrich J. Intraoperative Neurophysiological Monitoring. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK563203/
Novello BJ, Pobre T. Electrodiagnostic Evaluation of Peripheral Neuropathy. [Updated 2023 Jan 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK563169/
Sloan TB, Jameson L, Janik D. Evoked potentials. Cottrell and Young’s Neuroanesthesia (FIFTH EDITION). 2010 Jan; 115-130. Available from: https://doi.org/10.1016/B978-0-323-05908-4.10012-0
Anastasian ZH, Ramnath B, Komotar RJ, Bruce JN, Sisti MB, Gallo EJ, Emerson RG, Heyer EJ. Evoked potential monitoring identifies possible neurological injury during positioning for craniotomy. Anesth Analg. 2009 Sep;109(3):817-21. Available from:10.1213/ane.0b013e3181b086bd
Hemmer L, Knutson A, Uejima J. Intraoperative neuromonitoring. Essentials of Evidence-Based Practice of Neuroanesthesia and Neurocritical Care. 2022 Nov;217-225. https://doi.org/10.1016/B978-0-12-821776-4.00016-0
Niu X, Wang X, Ni P, Huang H, Zhang Y, Lin Y, Chen X, Teng H, Shao B. Bulbocavernosus reflex and pudendal nerve somatosensory evoked potential are valuable for the diagnosis of cauda equina syndrome in male patients. Int J Clin Exp Med. 2015 Jan 15;8(1):1162-7. PMID: 25785108; PMCID: PMC4358563.
Lieberman JA. Electromyography and Evoked Potentials. Essentials of Neuroanesthesia and Neurointensive care. 2008; 283-289. https://doi.org/10.1016/B978-141604653-0.10044-5
Doyal A, Schoenherr JW, Flynn DN. Motor Evoked Potential. [Updated 2023 Apr 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK580548/
Legatt AD, Emerson RG, Epstein CM, MacDonald DB, Deletis V, Bravo RJ, López JR. ACNS Guideline: Transcranial Electrical Stimulation Motor Evoked Potential Monitoring. J Clin Neurophysiol. 2016 Feb;33(1):42-50. doi: 10.1097/WNP.0000000000000253. PMID: 26756258.
Kim K. Intraoperative neurophysiology monitoring for spinal dysraphism. J Korean Neurosurg Soc [Internet]. 2020;64(2):143–50. http://dx.doi.org/10.3340/jkns.2020.0124
Jahangiri FR, Silverstein JW, Trausch C, Al Eissa S, George ZM, DeWal H, et al. Motor evoked potential recordings from the urethral sphincter muscles (USMEPs) during spine surgeries. Neurodiagn J [Internet]. 2019;59(1):34–44. http://dx.doi.org/10.1080/21646821.2019.1572375
Jahangiri FR, Asdi RA, Tarasiewicz I, Azzubi M. Intraoperative triggered electromyography recordings from the external urethral sphincter muscles during spine surgeries. Cureus [Internet]. 2019;11(6):e4867. http://dx.doi.org/10.7759/cureus.4867
Niu X, Shao B, Ni P, Wang X, Chen X, Zhu B, et al. Bulbocavernosus reflex and pudendal nerve somatosensory-evoked potentials responses in female patients with nerve system diseases. J Clin Neurophysiol [Internet]. 2010;27(3):207–11. http://dx.doi.org/10.1097/WNP.0b013e3181dd4fca
Nonaka M, Itakura T, Iwamura H, Ueno K, Naito N, Miyata M, et al. Comparison of intraoperative neurophysiological monitoring methods for lumbosacral lipoma surgery in infants. Childs Nerv Syst [Internet]. 2023;39(6):1603–10. http://dx.doi.org/10.1007/s00381-023-05900-9
Aydinlar EI, Dikmen PY, Kocak M, Baykan N, Seymen N, Ozek MM. Intraoperative neuromonitoring of motor-evoked potentials in infants undergoing surgery of the spine and spinal cord. J Clin Neurophysiol [Internet]. 2019;36(1):60–6. http://dx.doi.org/10.1097/WNP.0000000000000523
Fekete G, Bognár L, Gutema E, Novák L. Intraoperative electrophysiology in children - Single institute experience of 96 examinations. Neurol India [Internet]. 2020;68(2):407–12. http://dx.doi.org/10.4103/0028-3886.284352
Crocoli A, Martucci C, Randi F, Ponzo V, Trucchi A, De Pasquale MD, et al. Intraoperative neuromonitoring for pediatric pelvic tumors. Front Pediatr [Internet]. 2022;10:949037. http://dx.doi.org/10.3389/fped.2022.949037
Kothbauer KF, Deletis V. Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst [Internet]. 2009;26(2):247–53. http://dx.doi.org/10.1007/s00381-009-1020-6
Sutter M, Eggspuehler A, Grob D, Jeszenszky D, Benini A, Porchet F, et al. The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J [Internet]. 2007;16 Suppl 2(Suppl 2):S162-70. http://dx.doi.org/10.1007/s00586-007-0418-7
Scibilia A, Terranova C, Rizzo V, Raffa G, Morelli A, Esposito F, et al. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools? Neurosurg Focus [Internet]. 2016;41(2):E18. http://dx.doi.org/10.3171/2016.5.FOCUS16141
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 J of Neurophysiological Monitoring
This work is licensed under a Creative Commons Attribution 4.0 International License.