Benefits and Risks of Intraoperative Neuromonitoring for Intramedullary Spinal Cord Tumors: A Technical Report

Authors

  • Carolyn Iduh Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Global Innervation LLC, Dallas, Texas, USA https://orcid.org/0009-0006-4020-0973
  • Anwara Khan Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Global Innervation LLC, Dallas, Texas, USA https://orcid.org/0000-0002-3637-0455
  • Prasanth Chalamalasetty Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA https://orcid.org/0000-0002-3637-0455
  • Tuba Shiwani Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Global Innervation LLC, Dallas, Texas, USA https://orcid.org/0009-0003-5013-4154
  • Lily Nguyen Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Global Innervation LLC, Dallas, Texas, USA https://orcid.org/0009-0004-8463-0022
  • Faisal R. Jahangiri Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Global Innervation LLC, Dallas, Texas, USALabouré College of Healthcare, Milton, Massachusetts, USA https://orcid.org/0000-0002-1342-1977

DOI:

https://doi.org/10.5281/zenodo.10573532

Keywords:

Spinal cord tumor, intramedullary, extramedullary, intradural, IMSCT, SSEP, SEP, MEP, EMG, BCR, TOF, TIVA

Abstract

Intramedullary spinal cord tumors (IMSCT) are a rare condition that can have adverse effects on both the sensory and motor tracts, as well as the gray and white matter of the spinal cord. One type of IMSCT, known as ependymomas, is typically seen in adults, and is characterized by an enhancing mass with clear borders extending outward from the central canal's ependymal lining. In this study, over 800 patients have undergone intramedullary spinal cord tumor surgeries with intraoperative neurophysiological monitoring (IONM), and the majority have successfully overcome any postoperative deficits.

Multimodal IONM techniques, such as Somatosensory Evoked Potentials (SSEPs), Motor Evoked Potentials (MEPs), Epidural recordings (D-waves), Electromyography (EMG), Bulbocavernosus Reflex (BCR), and Train of Four (TOF), were used to monitor the procedures. While intramedullary spinal tumors can be challenging to treat, early surgery can lead to better outcomes. Intraoperative modalities like D-waves and MEPs have shown promise in reducing neurological outcomes, but more research is needed to understand their effectiveness fully.

References

Yanni, D. S., Ulkatan, S., Deletis, V., Barrenechea, I. J., Sen, C., & Perin, N. I. (2010). Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. Journal of neurosurgery. Spine, 12(6), 623–628. https://doi.org/10.3171/2010.1.SPINE09112.

Luksik, A. S., Garzon-Muvdi, T., Yang, W., Huang, J., & Jallo, G. I. (2017). Pediatric spinal cord astrocytomas: a retrospective study of 348 patients from the SEER database. Journal of neurosurgery. Pediatrics, 19(6), 711–719. https://doi.org/10.3171/2017.1.PEDS16528.

Jahangiri, F. R., Khan, A., Allouche, T., Gorasia, H., Mesfin, Y., & Bathurst, N. (2023). Spinal Cord Mapping with Somatosensory Evoked Potentials (SSEP) in Cervical and Thoracic Surgeries. J of Neurophysiological Monitoring, 1(1), 37–43. https://doi.org/10.5281/zenodo.10207942.

Cheng, J. S., Ivan, M. E., Stapleton, C. J., Quinones-Hinojosa, A., Gupta, N., & Auguste, K. I. (2014). Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors. Journal of neurosurgery. Pediatrics, 13(6), 591–599. https://doi.org/10.3171/2014.2.PEDS1392.

Lakomkin N;Mistry AM;Zuckerman SL;Ladner T;Kothari P;Lee NJ;Stannard B;Vasquez RA;Cheng JS; (n.d.)(2017). Utility of intraoperative monitoring in the resection of spinal cord tumors: An analysis by tumor location and Anatomical Region. Spine. Retrieved December 1, 2022, from https://pubmed.ncbi.nlm.nih.gov/28658041/.

Sala, F., Bricolo, A., Faccioli, F., Lanteri, P., & Gerosa, M. (2007, July 26). Surgery for intramedullary spinal cord tumors: The role of intraoperative (neurophysiological) monitoring - european spine journal. SpringerLink. Retrieved December 1, 2022, from https://link.springer.com/article/10.1007/s00586-007-0423-x/.

Overzet, K., Jahangiri, F. R., & Funk, R. (2020, March 10). Bulbocavernosus reflex monitoring during intramedullary CONUS tumor surgery. Cureus. Retrieved December 1, 2022, from https://www.cureus.com/articles/25043-bulbocavernosus-reflex-monitoring-during-intramedullary-conus-tumor-s.

Quiñones-Hinojosa A, Lyon R, Zada G, Lamborn KR, Gupta N, Parsa AT, McDermott MW, Weinstein PR. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery. 2005 May;56(5):982-93; discussion 982-93.

Skrap B, Tramontano V, Faccioli F, Meglio M, Pinna G, Sala F. Surgery for intramedullary spinal cord ependymomas in the neuromonitoring era: results from a consecutive series of 100 patients. J Neurosurg Spine. 2021 Dec 10;36(5):858-868. doi: 10.3171/2021.7.SPINE21148.

Zieliński, P., Gendek, R., Paczkowski, D., Harat, M., Dzięgiel, K., & Sokal, P. (2013). Results of intraoperative neurophysiological monitoring in spinal canal surgery. Neurologia i neurochirurgia polska, 47(1), 27–31. https://doi.org/10.5114/ninp.2013.32937.

Costa, P., Peretta, P., & Faccani, G. (2013). Relevance of intraoperative D wave in spine and spinal cord surgeries. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 22(4), 840–848. https://doi.org/10.1007/s00586-012-2576-5.

Fujiwara, Y., Kotaka, S., Ohta, R., Arakawa, Y., Kadonishi, Y., Nishimori, M., Manabe, H., & Adachi, N. (2020). The Seven-Color TcMsEP Grading System: A Novel Alarm Method for Intraoperative Neurophysiological Monitoring Using Transcranial Electrical Stimulated Muscle Evoked Potentials (TcMsEPs) in Intramedullary Spinal Cord Tumor Surgeries. Spine surgery and related research, 5(4), 238–243. https://doi.org/10.22603/ssrr.2020-0144.

Jin, S. H., Chung, C. K., Kim, C. H., Choi, Y. D., Kwak, G., & Kim, B. E. (2015). Multimodal intraoperative monitoring during intramedullary spinal cord tumor surgery. Acta neurochirurgica, 157(12), 2149–2155. https://doi.org/10.1007/s00701-015-2598-y.

Kimchi, G., Knoller, N., Korn, A., Eyal-Mazuz, Y., Sapir, Y., Peled, A., & Harel, R. (2021). Delayed variations in the diagnostic accuracy of intraoperative neuromonitoring in the resection of intramedullary spinal cord tumors. Neurosurgical focus, 50(5), E21. https://doi.org/10.3171/2021.2.FOCUS201084.

Kothbauer, K. F., Deletis, V., & Epstein, F. J. (1998). Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurgical focus, 4(5), e1. https://doi.org/10.3171/foc.1998.4.5.4.

Kurokawa, R., Kim, P., Itoki, K., Yamamoto, S., Shingo, T., Kawamoto, T., & Kawamoto, S. (2018). False-Positive and False-Negative Results of Motor Evoked Potential Monitoring During Surgery for Intramedullary Spinal Cord Tumors. Operative neurosurgery (Hagerstown, Md.), 14(3), 279–287. https://doi.org/10.1093/ons/opx113.

Li, T. Y., Chu, J. S., Xu, Y. L., Yang, J., Wang, J., Huang, Y. H., Kwan, A. L., & Wang, G. H. (2014). Surgical strategies and outcomes of spinal ependymomas of different lengths: analysis of 210 patients: clinical article. Journal of neurosurgery. Spine, 21(2), 249–259. https://doi.org/10.3171/2014.3.SPINE13481.

Muramoto, A., Imagama, S., Ito, Z., Ando, K., Tauchi, R., Matsumoto, T., Nakashima, H., Matsuyama, Y., & Ishigro, N. (2014). The cutoff amplitude of transcranial motor evoked potentials for transient postoperative motor deficits in intramedullary spinal cord tumor surgery. Spine, 39(18), E1086–E1094. https://doi.org/10.1097/BRS.0000000000000421.

Rajshekhar, V., Velayutham, P., Joseph, M., & Babu, K. S. (2011). Factors predicting the feasibility of monitoring lower-limb muscle motor evoked potentials in patients undergoing excision of spinal cord tumors. Journal of neurosurgery. Spine, 14(6), 748–753. https://doi.org/10.3171/2011.1.SPINE10310.

Olmsted, Z. T., Ryu, B., Phayal, G., Green, R., Lo, S. L., Sciubba, D. M., Silverstein, J. W., & D'Amico, R. S. (2022). Direct Wave Intraoperative Neuromonitoring for Spinal Tumor Resection: A Focused Review. World neurosurgery: X, 17, 100139. https://doi.org/10.1016/j.wnsx.2022.100139.

Noordhof RK, Vinke S, Kurt E. Spinal cord stimulation in patients suffering from chronic pain after surgery for spinal intradural tumors: A case report and literature summary. Pain Pract. 2022 Nov;22(8):746-752. doi: 10.1111/papr.13156. Epub 2022 Aug 30. PMID: 36004480.

Elsherif, E., AlMusrea, K., & Orz, Y. (2019). Intraoperative neurophysiological mapping & localization of posterior median sulcus during intramedullary spinal cord tumor resection_technical communication. Interdisciplinary Neurosurgery, 18, 100525. https://doi.org/10.1016/j.inat.2019.100525

Downloads

Published

2024-01-08

How to Cite

Iduh, C., Khan, A., Chalamalasetty, P., Shiwani, T., Nguyen, L., & Jahangiri, F. R. (2024). Benefits and Risks of Intraoperative Neuromonitoring for Intramedullary Spinal Cord Tumors: A Technical Report . J of Neurophysiological Monitoring, 2(1), 44–54. https://doi.org/10.5281/zenodo.10573532

Most read articles by the same author(s)

1 2 > >>