Effect of Dexmedetomidine on Motor Evoked Potentials in the Adult Population: Systematic Review and Meta-Analysis

Authors

  • Faisal R Jahangiri Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Global Innervation LLC, Dallas, Texas, USA; Labouré College of Healthcare, Milton, Massachusetts, USA https://orcid.org/0000-0002-1342-1977
  • Angel Y Voon Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA; Department of Neuroscience, School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA Global Innervation LLC, Dallas, Texas, USAGlobal Innervation LLC, Dallas, Texas, USA https://orcid.org/0009-0002-8457-6842

DOI:

https://doi.org/10.5281/zenodo.10607542

Abstract

BACKGROUND: Dexmedetomidine (DEX) is commonly used as an adjunct to total intravenous anesthesia (TIVA) to help reduce intraoperative consumption of propofol and opioids. However, the effect of DEX on transcranial motor-evoked potential (TCeMEPs) monitoring has remained controversial due to the covariances of dosage used, the presence of initial bolus, patient population, and duration of anesthesia. This systematic review and meta-analysis aimed to evaluate the effect of DEX on TCeMEPs amplitude in the adult population by analyzing different DEX dosage infusion groups interacting with different covariances.

METHODS: This systematic review consisted of meta-analyses of the literature from PubMed, Google Scholar, Science Direct, Springer, and some other sources to quantify the effect of DEX on TCeMEP amplitude. The total cohort consisted of 402 patients who underwent surgery with intraoperative TCeMEP monitoring and used DEX as an adjunct. For each study selected, various factors were collected, such as the dosage of DEX, the presence of initial bolus, TIVA regime, sample size, TCeMEPs amplitude at baseline and after DEX infusion, and the time when amplitudes were obtained. For the studies that did not report the amplitude of TCeMEPs, the number of times when TCeMEPs were lost during surgery was recorded. After data was extracted from the included studies, the effect size was investigated using a random effects model. Cochran Q test was used to evaluate the heterogeneity of studies and subgroups.

References

Andleeb, R., Agrawal, S., & Gupta, P. (2022). Evaluation of the Effect of Continuous Infusion of Dexmedetomidine or a Subanesthetic Dose Ketamine on Transcranial Electrical Motor Evoked Potentials in Adult Patients Undergoing Elective Spine Surgery under Total Intravenous Anesthesia: A Randomized Controlled Exploratory Study. Asian Spine Journal, 16(2), 221–230. https://doi.org/10.31616/asj.2021.0015

Annecke, T., Conzen, P., & Ney, L. (2012). Propofol-related infusion syndrome induced by "moderate dosage" in a patient with severe head trauma. Journal of Clinical Anesthesia, 24(1), 51–54.

Bala, E., Sessler, D. I., Nair, D. R., McLain, R., Dalton, J. E., & Farag, E. (2008). Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology, 109(3), 417–425. https://doi.org/10.1097/ALN.0b013e318182a467

Biscevic, M., Sehic, A., & Krupic, F. (2020). Intraoperative neuromonitoring in spine deformity surgery: modalities, advantages, limitations, medicolegal issues - surgeons' views. EFORT open reviews, 5(1), 9–16. https://doi.org/10.1302/2058-5241.5.180032

Chen, Z., Lin, S., & Shao, W. (2015). Effects on somatosensory and motor evoked potentials of senile patients using different doses of dexmedetomidine during spine surgery. Irish journal of medical science, 184(4), 813–818. https://doi.org/10.1007/s11845-014-1178-0

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions. Wiley. https://doi.org/10.1002/9781119536604

Kars, M. S., Villacres Mori, B., Ahn, S., Merwin, S., Wendolowski, S., Gecelter, R., Rothman, A., & Poon, S. (2019). Fentanyl versus remifentanil-based TIVA for pediatric scoliosis repair: does it matter? Regional anesthesia and pain medicine, 44(6), 627–631. https://doi.org/10.1136/rapm-2018-100217

Lam, S., Nagata, M., Sandhu, S. K., Veselis, R. A., & McCormick, P. J. (2019). Effect of ketamine on transcranial motor-evoked potentials during spinal surgery: a pilot study. British Journal of Anaesthesia, 123(6), e530–e532. https://doi.org/10.1016/j.bja.2019.09.005

Lee, W. H., Park, C. K., Park, H. P., Kim, S. M., Oh, B. M., Kim, K., Choi, Y. D., & Seo, H. G. (2019). Effect of Dexmedetomidine Combined Anesthesia on Motor evoked Potentials During Brain Tumor Surgery. World neurosurgery, 123, e280–e287. https://doi.org/10.1016/j.wneu.2018.11.152

Legatt, A. D., Emerson, R. G., Epstein, C. M., MacDonald, D. B., Deletis, V., Bravo, R. J., & López, J. R. (2016). ACNS Guideline: Transcranial Electrical Stimulation Motor Evoked Potential Monitoring. Journal of Clinical Neurophysiology: official publication of the American Electroencephalographic Society, 33(1), 42–50. https://doi.org/10.1097/WNP.0000000000000253

Li, Y., Meng, L., Peng, Y., Qiao, H., Guo, L., Han, R., & Gelb, A. W. (2016). Effects of Dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial. BMC anesthesiology, 16(1), 51. https://doi.org/10.1186/s12871-016-0217-y

Lin, S., Dai, N., Cheng, Z., Shao, W., & Fu, Z. (2014). Effect of dexmedetomidine-etomidate-fentanyl combined anesthesia on somatosensory- and motor-evoked potentials in patients undergoing spinal surgery. Experimental and therapeutic medicine, 7(5), 1383–1387. https://doi.org/10.3892/etm.2014.1555

Liu, T., Qin, Y., Qi, H., Luo, Z., Yan, L., Yu, P., Dong, B., Zhao, S., Wu, X., Chang, Z., Liu, Z., Liu, X., Yuan, T., Li, H., Xiao, L., & Wang, G. (2022). A Loading Dose of Dexmedetomidine With Constant Infusion Inhibits Intraoperative Neuromonitoring During Thoracic Spinal Decompression Surgery: A Randomized Prospective Study. Frontiers in pharmacology, 13, 840320. https://doi.org/10.3389/fphar.2022.840320

Mahmoud, M., Sadhasivam, S., Sestokas, A. K., Samuels, P., & McAuliffe, J. (2007). Loss of transcranial electric motor evoked potentials during pediatric spine surgery with dexmedetomidine. Anesthesiology, 106(2), 393–396. https://doi.org/10.1097/00000542-200702000-00027

Mahmoud, M., Sadhasivam, S., Salisbury, S., Nick, T. G., Schnell, B., Sestokas, A. K., Wiggins, C., Samuels, P., Kabalin, T., & McAuliffe, J. (2010). Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology, 112(6), 1364–1373. https://doi.org/10.1097/ALN.0b013e3181d74f55

Mishra, R.K., Prabhakar, H., Kapoor, I., Chandran, D.S., & Chaturvedi, A. (2020). Effect of Two Anesthetic Regimes with Dexmedetomidine as Adjuvant on Transcranial Electrical Motor Evoked Potentials during Spine Surgery. Journal of Neuroanaesthesiology and Critical Care, 07, 084 - 090.

Pacreu, S., Vilà, E., Moltó, L., Fernández-Candil, J., Fort, B., Lin, Y., & León, A. (2021). Effect of dexmedetomidine on evoked-potential monitoring in patients undergoing brain stem and supratentorial cranial surgery. Acta anaesthesiologica Scandinavica, 65(8), 1043–1053. https://doi.org/10.1111/aas.13835

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed.), 372, n71. https://doi.org/10.1136/bmj.n71

Rozet, I., Metzner, J., Brown, M., Treggiari, M. M., Slimp, J. C., Kinney, G., Sharma, D., Lee, L. A., & Vavilala, M. S. (2015). Dexmedetomidine Does Not Affect Evoked Potentials During Spine Surgery. Anesthesia and analgesia, 121(2), 492–501. https://doi.org/10.1213/ANE.0000000000000840

Sachdev, S., Sisodia, R., Soni, V., & Jethava, D. (2020). Comparison of dexmedetomidine with ketamine for their effects on amplitude of motor evoked potential intraoperatively. Indian Journal of Clinical Anaesthesia. 7. 267-271. 10.18231/j.ijca.2020.048.

Downloads

Published

2024-02-02

How to Cite

Jahangiri, F. R., & Voon, A. Y. (2024). Effect of Dexmedetomidine on Motor Evoked Potentials in the Adult Population: Systematic Review and Meta-Analysis . J of Neurophysiological Monitoring, 2(2), 1–13. https://doi.org/10.5281/zenodo.10607542