Efficacy of Sugammadex as a Reversal with an Optimized Train of Four Stimulation Parameters
DOI:
https://doi.org/10.5281/zenodo.13945416Keywords:
Sugammadex, neostigmine, muscle relaxant, neuromuscular block, ionm, TCeMEP, mep, emg, tofAbstract
Residual neuromuscular blockades are a potentially dangerous complication after surgery due to administering neuromuscular blocking agents. Sugammadex is a novel neuromuscular blocking agent reversal drug that combats faster reversal times. However, it still needs to be determined how efficient it is compared to neostigmine, particularly with optimal Train of Four monitoring. Sugammadex and neostigmine were analyzed through 11 studies to determine the speed of recovery and postoperative complications. Sugammadex was found to have a quicker recovery time and fewer complications after surgery compared to neostigmine. A train of four stimulation analyses determined that higher voltages do not create as adequate 4/4 responses as at a lower, more reliable voltage. Therefore, our results determine that Sugammadex is a faster, safer drug choice, and the train of four stimulations is most reliable at 30mA. Still, it may be adequate up to 50mA without supramaximal stimulation. Further research should investigate how Sugammadex may differentiate depending on the patient's sex and how muscle relaxant dosages may change recovery time even with adequate training of four responses.
References
Brull, Sorin J., Kopman, Aaron F. (2017). Current Status of Neuromuscular Reversal and Monitoring: Challenges and Opportunities. Anesthesiology. 126:173–190 doi:10.1097/ALN.0000000000001409
Murphy, G. S., Szokol, J. W., Marymont, J. H., Greenberg, S. B., Avram, M. J., & Vender, J. S. (2008). Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesthesia & Analgesia, 107(1), 130–137. https://doi.org/10.1213/ane.0b013e31816d1268
Thomsen JL, Nielsen CV, Palmqvist DF, Gätke MR. (2015). Premature awakening and underuse of neuromuscular monitoring in a registry of patients with butyrylcholinesterase deficiency. Br J Anaesth. 115(Suppl 1):i89-i94. doi:10.1093/bja/aev103.
Jahangiri, Faisal R. (2023). Train of Four (TOF) Monitoring: Are We Doing It The Right Way? https://www.globalinnervation.com/blog/2023-11-train-of-four-tof-monitoring-are-we
McGrath, C. D., & Hunter, J. M. (2006). Monitoring of neuromuscular block. Continuing Education in Anaesthesia, Critical Care & Pain, 6(1), 7–12. https://doi.org/10.1093/bjaceaccp/mki067
Shah, S.B., Chawla, R., Pahade, A., et al. (2021). Neuromuscular blockers and their reversal: have we finally found the on-off switches? Ain-Shams J Anesthesiol. 13. doi:10.1186/s42077-021-00130
Motamed, Cyrus. (2023). Intraoperative Monitoring of Neuromuscular Blockade. Life. 13(5), 1184; doi:10.3390/life13051184
Ali HH, U. J. (1970, Nov). Stimulus frequency in the detection of neuromuscular block in humans. Br J Anaesth, 42(11), 967-78. Retrieved Sep 07, 2018, from https://bjanaesthesia.org/article/S0007-0912(17)50404-3/pdf
Kopman, Aaron F., Yee, Pamela S., Neuman, George G. (1997). Relationship of the Train-of-Four Fade Ratio to Clinical Signs and Symptoms of Residual Paralysis in Awake Volunteers. Anesthesiology. 86 (4): 765-771.
Naguib, M., Brull, S. J., Johnson, B. 2017. Conceptual and Technical Insights Into the Basis of Neuromuscular Monitoring. Association of Anaesthetists. 72 (S1): 16-37. doi: 10.1111/anae.13738.
Kim, J. H., Kim, M., Oh, M., Lee, S. K., & Kwon, Y. S. (2024). Effect of sugammadex on postoperative complications in patients with severe burn who underwent surgery: a retrospective study. Scientific reports, 14(1), 525. https://doi.org/10.1038/s41598-024-51171-y
Saitoh Y, Nakazawa K, Toyooka H, Amaha K. Optimal stimulating current for train-of-four stimulation in conscious subjects. Can J Anaesth. 1995 Nov;42(11):992-5. doi: 10.1007/BF03011071.
Heier, Tom, Caldwell, James E., Feiner, John R., Liu, Luke, Ward, Theresa, Wright, Peter M. C. (2010). Relationship between Normalized Adductor Pollicis Train-of-four Ratio and Manifestations of Residual Neuromuscular Block: A Study Using Acceleromyography during Near Steady-state Concentrations of Mivacurium. Anesthesiology; 113:825–832 doi: https://doi.org/10.1097/ALN.Ob013e3181ebddca
Iwasaki, H., Sato, H., Takagi, S. et al. A comparison between the adductor pollicis muscle and the abductor digiti minimi muscle using electromyography AF-201P in rocuronium-induced neuromuscular block: a prospective comparative study. BMC Anesthesiol 22, 117 (2022). https://doi.org/10.1186/s12871-022-01656-y
Pollard, Brian J. (2005). Neuromuscular blocking agents and reversal agents. Anaesthesia and Intensive Care Medicine, 6(1), 189-192
Buder, Fuchs T., Meistelman, C., Raft. J. (2013). Sugammadex: clinical development and practical use. Korean Journal of Anesthesiology, 65(6), 495-500.
Krause, M., McWilliams, S. K., Bullard, K. J., et al. (July, 2020). Neostigmine Versus Sugammadex for Reversal of Neuromuscular Blockade and Effects on Reintubation for Respiratory Failure or Newly Initiated Noninvasive Ventilation: An Interrupted Time Series Design. Anesthesia & Analgesia 131(1):141-151. DOI: 10.1213/ANE.0000000000004505
Goodner J. A., Likar, E. J., Hoff, A. L., et al. (2021). Clinical Impact of Sugammadex in the Reversal of Neuromuscular Blockade. Cureus 13(6): e15413. doi:10.7759/cureus.15413
Blobner, M., & Hunter, J. M. (2020). Reversal of neuromuscular blockade: sugammadex and beyond. Anaesthesia, 75(Suppl 1), e35-e45. https://doi.org/10.1111/anae.14871
Ruscic, G., Zarkovic, K., Petrovic, M., & Zarkovic, D. (2017). Neuromuscular relaxants and their impact on intraoperative neuromonitoring: A review. Acta Clinica Croatica, 56(3), 550–557. PMID: 29510865. DOI: https://doi.org/10.20471/acc.2017.56.03.21
Higgins J P T, Altman D G, Gøtzsche P C, JÃni P, Moher D, Oxman A D et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomized trials BMJ 2011; 343:d5928 doi:10.1136/bmj.d5928
Li, Q., Yao, H., Wu, J. et al. A comparison of neuromuscular blockade and reversal using cisatracurium and neostigmine with rocuronium and sugammadex on the quality of recovery from general anesthesia for percutaneous closure of left atrial appendage. J Cardiothorac Surg 17, 211 (2022). https://doi.org/10.1186/s13019-022-01936-1
Leslie, K., Chan, M.T.V., Darvall, J.N. et al. Sugammadex, neostigmine and postoperative pulmonary complications: an international randomized feasibility and pilot trial. Pilot Feasibility Study 7, 200 (2021). https://doi.org/10.1186/s40814-021-00942-9
Huang C, Wang X, Gao S, Luo W, Zhao X, Zhou Q, Huang W, Xiao Y. Sugammadex Versus Neostigmine for Recovery of Respiratory Muscle Strength Measured by Ultrasonography in the Postextubation Period: A Randomized Controlled Trial. Anesth Analg. 2023 Mar 1;136(3):559-568. doi: 10.1213/ANE.0000000000006219. Epub 2022 Oct 24. PMID: 36279410; PMCID: PMC9907681.
Tang, J., He, R., Zhang, L., & Xu, S. (2023). Safety and efficacy of 4 mg·kg⁻¹ Sugammadex for simultaneous pancreas-kidney transplantation recipients: A prospective randomized trial. Annals of Transplantation, 28, e940211. https://doi.org/10.12659/AOT.940211
Tsai, Y. H., Chen, C. Y., Wong, H. F., & Chou, A. H. (2023). Comparison of neostigmine and sugammadex for hemodynamic parameters in neurointerventional anesthesia. Frontiers in neurology, 14, 1045847. https://doi.org/10.3389/fneur.2023.1045847
Togioka BM, Yanez D, Aziz MF, Higgins JR, Tekkali P, Treggiari MM. Randomized controlled trial of sugammadex or neostigmine for reversal of neuromuscular block on the incidence of pulmonary complications in older adults undergoing prolonged surgery. Br J Anaesth. 2020 May;124(5):553-561. doi: 10.1016/j.bja.2020.01.016. Epub 2020 Mar 2. PMID: 32139135.
Deana C, Barbariol F, D'Incà S, Pompei L, Rocca GD. SUGAMMADEX versus neostigmine after ROCURONIUM continuous infusion in patients undergoing liver transplantation. BMC Anesthesiol. 2020 Mar 25;20(1):70. doi: 10.1186/s12871-020-00986-z. PMID: 32213163; PMCID: PMC7093942.
Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev 2017. DOI: https://doi.org/10.1002/14651858.CD012763.
Wardhana A, Kurniawaty J, Uyun Y. Optimised reversal without train-of-four monitoring versus reversal using quantitative train-of-four monitoring: An equivalence study. Indian J Anaesth. 2019 May;63(5):361-367. doi: 10.4103/ija.IJA_94_19.
Brull SJ, Ehrenwerth J, Silverman DG. Stimulation with submaximal current for train-of-four monitoring. Anesthesiology. 1990 Apr;72(4):629-32. doi: 10.1097/00000542-199004000-00009.
Anaesthesia Critical Care & Pain Medicine, 39(3), 1-9. https://doi.org/10.1016/j.accpm.2020.01.005
Lagneau, F., Benayoun, L., Plaud, B., Bonnet, F., Favier, J., & Marty, J. (2001). The interpretation of train-of-four monitoring in intensive care: What about the muscle site and the current intensity? Intensive Care Medicine, 27(6), 1058-1063. https://doi.org/10.1007/s001340100964Lee YJ, Oh AY, Koo BW, Han JW, Park JH, Hong JP, Seo KS. Postoperative residual neuromuscular blockade after reversal based on a qualitative peripheral nerve stimulator response: A randomized controlled trial. Eur J Anaesthesiol. 2020 Mar;37(3):196-202. doi: 10.1097/EJA.0000000000001157. PMID: 31977627.
Fiorda Diaz, J., Echeverria-Villalobos, M., Esparza Gutierrez, A., Dada, O., Stoicea, N., Ackermann, W., Abdel-Rasoul, M., Heard, J., Uribe, A., & Bergese, S. D. (2022). Sugammadex versus neostigmine for neuromuscular blockade reversal in outpatient surgeries: A randomized controlled trial to evaluate efficacy and associated healthcare cost in an academic center. Frontiers in medicine, 9, 1072711. https://doi.org/10.3389/fmed.2022.1072711
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 J of Neurophysiological Monitoring
This work is licensed under a Creative Commons Attribution 4.0 International License.