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INTRODUCTION 

 

What is Fiber Photometry 

Fiber photometry allows for the visualization of neural population activity in awake, freely moving rodents 

[1]. This revolutionary technique was first developed at the Ludwig Maximilian University of Munich to 

image calcium activity as a proxy for neural activity in newborn mice [2]. Their foundational calcium 
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Fiber photometry is an exciting technique developed in the early 2000s 
to record neural activity in awake, behaving subjects. This technology 
utilizes components similar to optogenetics, such as fiber optic 
implants and fluorescent biosensors. Still, it offers an alternative 
approach to understanding neural populations and circuitry- to record 
rather than manipulate. Additionally, fiber photometry resembles two-
photon microscopy and miniscopes as all three were originally 
developed to use calcium imaging. However, fiber photometry has the 
added benefit of recording in freely moving animals and images at 
deeper brain regions, respectively. With these unique characteristics, 
fiber photometry has caught the interest of several fields of study, 
including social behavior, addiction, and mood affect, each of which has 
adapted this technique to fit their needs. Some key adaptations include 
the creation of new biosensors (i.e., dopamine, serotonin, 
norepinephrine), transgenic animal lines (i.e., cre-lox), and complex 
recording paradigms (i.e., fiber photometry in tandem with 
optogenetics and/or chemogenetics). Fiber photometry builds upon 
existing electrophysiological techniques and offers a powerful method 
to validate previously reported results or yield novel results. To this 
end, this technique has transformed how researchers study the brain 
and its activity preceding, during, or following behavioral events.  
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imaging principles were then further developed by Karl Deisseroth’s lab Stanford University [3]. However, 

fiber photometry has evolved exponentially in just a few decades, giving way to countless new applications 

[4-6]. This technique's undeniable impact and versatility have revolutionized studying the relationship 

between behavior and the brain.  

In this review, we will discuss how fiber photometry compares to and can complement existing neural 

techniques, as well as its applications within the studies of social behavior (e.g., maternal, social interaction, 

aggression, and mating), addiction (e.g., substance use, withdrawal, and relapse), and mood affect (e.g., 

depression, anxiety, and antidepressants). These three fields are associated with the reward system and 

dopaminergic signaling. [7-13]Several social behaviors, including mother-pup interactions, social play, 

social investigation, and mating, are inherently rewarding to rodents and require the synergy of several 

brain regions (e.g., hypothalamus, amygdala, nucleus accumbens, ventral tegmental area, medial prefrontal 

cortex, periaqueductal gray) and neurochemicals (e.g., oxytocin, vasopressin, dopamine, prolactin) to 

coordinate efficient interactions [7, 8, 14-17]. On the other hand, substance use utilizes the reward system 

to reinforce drug-seeking behavior powerfully. [10, 18, 19]. To this end, repeated substance use and/or 

substance abuse can dysregulate the natural reward system and ultimately lead to maladaptive behaviors 

and abnormal responses to rewarding stimuli. [9, 11, 20]. Similarly, mood disorders like depression are 

associated with changes in motivation and/or stimulus salience, both of which are modulated by the reward 

system. [12, 13, 21, 22]. Taken together, studies that have utilized fiber photometry within social behavior, 

addiction, and mood affect demonstrate how this neural technique has transformed the study of neural 

circuitry.  

 

METHODS 

 

Biological Components 

To image calcium ion activity, a genetically encoded calcium indicator (GECI) equipped with a fluorescent 

protein (i.e., green fluorescent protein [GFP] or tandem dimer tomato [tdTomato]) is incorporated into the 

structure of calcium receptors [23, 24]. The GECI is typically expressed using a viral microinjection in the 

brain region of interest. Once calcium is bound, the receptor undergoes a conformational change, allowing 

the encoded sensor to fluoresce [25, 26]. The resulting illumination is picked up and transmitted by the 

fiber optic and transformed into a trace representing the intensity of light illuminating from the brain 

region. Thus, the greater the light intensity, the greater the calcium activity was. A commonly used GECI is 

GCaMP [27]. However, biosensors developed for fiber photometry have not stopped with calcium 

indicators. In the past decade, dozens of sensors have been created for specific neurotransmitters, including 

glutamate [28], GABA [29], serotonin [30], dopamine [31-34], norepinephrine [35], and oxytocin [36], to 
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name a few. With the development of these fluorescent biosensors, the applications of fiber photometry 

have become limitless. 

In addition to the development of new fluorescent biosensors, transgenic rodent lines have evolved to target 

specific cell types. Briefly, transgenic animals have been bred with unique and specific genetic features (i.e., 

knock-in or knock-out). A commonly used transgenic system for fiber photometry experiments is the Cre-

Lox system [37]. This technique relies on knock-in animals expressing the enzyme cre recombinase within 

a specific cell or tissue type [38], and requires the encoding of loxP sites before and after the target gene(s). 

When the enzyme Cre recombinase is present, the two loxP sites are bound together, which can result in 

excision, inversion, or translocation of the encased gene(s) [39, 40]. In other words, using a Cre-Lox system 

allows for cell-specific control over select gene expression. By using a cre-dependent virus to express the 

GECI, researchers can selectively express their biosensor of choice in specific cell types.  

 

Technical Components  

Getting the right equipment is crucial when using the fiber photometry apparatus for studying brain 

activity. The main components can be swapped for different variations for different signaling molecules and 

strengths. In a common system, the process begins with the light source, typically an LED or laser, which 

generates light at specific wavelengths to excite fluorescent molecules in the sample. The light is then 

transmitted through fiber-optic patch cables, which direct it to the tissue, where a cannula holds the fiber 

in place for precise light delivery. The LED driver powers the fiber-coupled LEDs, ensuring consistent light 

output for the excitation of fluorophores. After the tissue emits fluorescence, the signal travels back through 

the fiber-optic cables and is captured by a high bandwidth detector, which provides high temporal 

resolution for accurate measurements. To minimize background interference, low-autofluorescence patch 

cables are used, reducing signal noise. The fluorescence is filtered by fiberoptic filter cubes, which isolate 

the desired wavelengths, often 405 nm and 470 nm, for detection. In general, two different wavelengths are 

delivered to the tissue, a control, isosbestic wavelength which corrects for motion artifacts and 

autofluorescence (i.e., 405 nm or 415 nm) and an excitation wavelength (i.e., 470 nm, 560 nm) which 

detects biosensor-specific fluorescence. An example of the fiber photometry system can be seen in figure 1 

(Thorlabs).  

In addition to the core components of a fiber photometry setup, there are several additional pieces of 

equipment that can enhance the system's functionality. Optical isolators are often used to prevent light from 

reflecting into the light source, which could otherwise interfere with measurements. Beam splitters are used 

to direct light to multiple pathways, allowing for simultaneous use of different wavelengths for excitation 

or the collection of emission signals. Microscopes or endoscopes can be integrated for precise imaging and 

light delivery in more localized or deep-brain structures. For experiments involving multiple channels of 

fluorescence, multiplexing equipment allows the simultaneous collection of signals from different 

fluorescent markers. Lock-in amplifiers may also be employed to increase signal clarity by synchronizing 
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with modulation frequencies, allowing for more sensitive detection of weak signals. Additionally, voltage-

controlled attenuators can adjust the intensity of the light to prevent photobleaching or damage to delicate 

samples. Together, these tools expand the versatility and sensitivity of fiber photometry systems, making 

them applicable in a wider range of experimental scenarios, from neural activity monitoring to dynamic 

cellular imaging. 

 

 

 

Figure 1: Fiber Photometry apparatus example diagram. 

 

Analysis 

Data analysis is a critical component of fiber photometry experiments, as it allows researchers to interpret 

fluorescence signals in the context of behavioral activity. Because raw signals can be influenced by factors 

such as motion artifacts or photobleaching, a control channel—often using an isosbestic wavelength—is 

used to correct for these non-neuronal fluctuations. The corrected signal is then normalized to a baseline 

fluorescence value, typically expressed as a change in fluorescence over baseline (ΔF/F) (Sherathiya et al., 

2021). Furthermore, to normalize signal across several recording sessions and/or animals, the z-score of 

the ΔF/F can be taken. Accurate signal normalization requires a careful understanding of biosensor 

dynamics, signal alignment, and regression, which can present challenges for those new to the technique. 
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While most labs use custom-written scripts to analyze their fiber photometry data, we discuss a few open-

source options for fiber photometry analysis that are especially helpful for labs looking to start fiber 

photometry research but do not have a computational background.  

pMAT (Photometry Modular Analysis Tool), created by the Barker lab [41]pMAT is an open-source software 

suite developed in MATLAB for visualizing and analyzing fiber photometry data. It is designed to perform 

fundamental processing steps, including signal correction, normalization, and event-aligned analyses. 

pMAT is particularly accessible for researchers new to fiber photometry, offering a streamlined approach 

compatible with the most used data acquisition systems. The tool aims to promote consistency in data 

processing and serves as a step toward standardizing analysis practices across the field. 

GuPPy, created by the Lerner lab [42], is a Python-based fiber photometry analysis tool designed to be 

accessible for new users, particularly those with limited coding experience. It features a graphical user 

interface that guides researchers through key analysis steps, making it easier to adopt without extensive 

programming knowledge. Unlike pMAT, which is MATLAB-based, GuPPy leverages Python—a freely 

available and open-source language—thereby reducing the cost barrier for users. Additionally, GuPPy offers 

the flexibility to modify and extend its functionality for those with more advanced coding skills to suit 

specific experimental needs. 

FiPhA, created collaboratively between the Social & Scientific Systems, Inc., and the Neurobiology 

Laboratory of the National Institute of Environmental Sciences (NIEHS) [43], is an open-source fiber 

photometry analysis software developed using the programming platform R. It was designed to offer a 

robust, flexible, and visually intuitive interface for data analysis. FiPhA supports customizing input data 

formats, making it compatible with various fiber photometry acquisition modes. Notably, it allows 

researchers to analyze behavioral and photometry data within a single user interface, streamlining the 

workflow for integrated experimental analysis. 

In addition to the three software packages mentioned, various research teams have developed other open-

source and custom analysis tools. While these packages may vary in capabilities, they all share the goal of 

enabling the visualization and analysis of fiber photometry data, catering to a range of experimental needs 

and user preferences. 

 

DISCUSSION 

 

Comparing Fiber Photometry to Other Techniques 

Fiber photometry builds upon existing neural technologies while offering additional benefits. In this way, 

it is a steppingstone between well-established techniques and novel discoveries. Below, we describe how 
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fiber photometry compares to two-photon microscopy, miniscopes, and single electrode/sharp electrode 

recordings.  

Two-photonoton microscopy uses a scanning laser to emit femtosecond-pulsed near-infrared photons to 

excite a fluorophore. This allows for three-dimensional image resolution at the submicron scale [44, 45]. 

Like fiber photometry, genetically encoded indicators are used to detect and image neurons. Two photons 

of near-infrared light are absorbed by the fluorophore, combining to produce an excited state comparable 

to that of a single, higher-energy photon [46]. Two-photon microscopy achieves higher spatial resolution 

(submicron) than confocal microscopy because infrared light scatters less than visible light within tissue 

[47]. While fiber photometry allows for the investigation of deeper tissues, it can only record at a population 

level and requires further processing and analysis to create images. In contrast, two-photon microscopy 

achieves single-cell resolution and directly images cellular structures through an implanted lens [1, 48]. 

However, fiber photometry excels over two-photon microscopy is with its temporal precision. While the 

fiber optic captures fluorescent activity within milliseconds, two-photon microscopy imaging is limited by 

the speed of its scanning laser (tens of milliseconds), though improvements to imaging speed have been 

made [49]. A major caveat to two-photon microscopes is the requirement for the animal to be head-fixed. 

This limitation prompted the advent of miniscopes, an alternative neural imaging technique, which 

implements two-photon microscopy in freely moving mice [50, 51] and Drosophila larvae [52], and in 

combination with optogenetics [53]. 

Miniscopes were developed for imaging neural activity in freely moving animals. The original design was 

around 2.4 cm3 and weighed 1.9 g [54]. The wires supplying power and transferring data to and from the 

miniscope are more flexible than fiber optics, and wireless miniscopes have been developed utilizing micro-

SD storage cards and batteries attached to the device or a separate backpack to improve mobility further. 

[55-57]. Miniscopes use wide-field LEDs to excite fluorescent indicators, and the resulting image is recorded 

via a CMOS camera [54, 58]. The light passes through a gradient refractive index lens (GRIN), which can 

be placed directly on the brain's surface or mounted for slightly deeper imaging. Like two-photon 

microscopy, miniscopes are limited to imaging superficial layers of tissue, around 150 μm [58], though 

deeper imaging of around 500 μm is possible with the use of a mounted GRIN lens [59]. Compared to fiber 

photometry, miniscopes are bulkier, which limit some behavioral studies, especially those requiring motor 

tasks. Nonetheless, some longitudinal studies have been performed on rodents and even non-human 

primates [60, 61] 

In contrast to the previously discussed imaging methods, single electrode, or sharp electrode, recording is 

an older electrophysiological method used to image single neurons [62]. Sharp electrode recordings use 

current or voltage clamping to measure intracellular changes in potential or current, respectively. The 

electrode comprises a glass micropipette, 1 μm or less in diameter, filled with an electrolyte solution of 

around 2 M [62, 63]. The molarity of this electrolyte solution must be matched with the molarity of the 

target cell to achieve the most accurate recordings [64, 65]. From these recordings, specific subtypes of 



FIBER PHOTOMETRY 

 

jneurophysiologicalmonitoring.com   Vol. 3 | Issue 2 | 2025 | 7 
 

neurons can be identified based on firing patterns, activity duration, and waveform changes in response to 

stimulus [66, 67]. Leak conductance has been reported to attenuate signal, introduce noise and artifacts 

with sharp electrodes [68, 69], but qualitative identifying features do not appear to be significantly altered 

[70]. Due to the single-cell resolution of sharp electrodes, this technique has been the primary tool for 

describing neural function and has been seminal for understanding the activity of single neurons within 

brain regions or networks [71, 72]. Indeed, electrophysiology has been considered the “gold standard” in 

temporal resolution [73, 74]. However, sharp electrode recording generally requires a head-fixed, 

stereotaxic procedure that limits in vivo implications, unlike fiber photometry [63, 75]. 

 

Optogenetics, Chemogenetics, and Fiber Photometry 

While fiber photometry has become increasingly favored over other electrophysiological techniques, it can 

also complement existing neural technologies. Optogenetics is a well-established technique that utilizes 

fiber optics like fiber photometry. However, rather than imaging a brain region, optogenetics manipulates 

[76-78]. When used with fiber photometry, brain regions and neuronal circuits can be studied 

bidirectionally (both functionally and connectivity-wise). Optogenetics involvesconnectivity-wise 

genetically encoded photosensitive proteins that can be expressed when exposed to light. When activated, 

these photosensitive proteins can either trigger or inhibit further activity [76, 79]. Optogenetics alone is 

often used to test how activation or inhibition of a brain region affects an event of interest [80]. However, 

when used with fiber photometry, the two techniques can be used to study how brain regions are connected 

both functionally and structurally [81]. To do this, a fiber optic is implanted in one brain region for 

optogenetic stimulation (i.e., the ventral tegmental area). In contrast, a second fiber optic is implanted in 

another brain region for fiber photometry imaging (i.e., the nucleus accumbens). To this end, when the 

optogenetic fiber is stimulated, the downstream activity in the connected brain region can be recorded and 

quantified. Advances in optogenetics and fiber photometry have made targeting specific cell populations 

possible for even greater selectivity. An alternative approach is to perform both optogenetics and fiber 

photometry in the same fiber optic [82]. This allows brain regions to switch from being the site of activation 

to the site of recording easily and spurs the study of bidirectional effects. Indeed, using optogenetics with 

fiber photometry has become a popular way to study neural circuits in a variety of applications [3, 81, 83-

85]. 

Like optogenetic experiments, chemogenetics offers an alternative way to manipulate brain regions and 

circuits reversibly. However, whereas optogenetics allows for acute and temporally precise control of brain 

activity, chemogenetics may reflect more naturally occurring neural dynamics [86]. Chemogenetics utilizes 

genetically encoded receptors only activated by a specific ligand or chemical. Typically, these receptor-

ligand combinations are designed to preserve natural signaling dynamics yet control the release of 

endogenous neurotransmitters [87-90]. Furthermore, these receptors can be stimulated to enhance or 

inhibit neural activity and can be selectively expressed by cell type [91]. While optogenetic studies have 
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primarily been conducted in rodent models, chemogenetics has been used in non-human primate studies 

[92, 93] and has gained popularity for the potential of human clinical use [87, 88, 94, 95]. Thus, 

implementing fiber photometry with chemogenetics has proven to be a fruitful combination. Studies that 

use fiber photometry to record chemogenetically influenced neural activity have bolstered our 

understanding of arousal, the brain-gut pathway, social behaviors, and depressive-like behaviors [96-99].  

 

Using Fiber Photometry in Tandem with Behavior 

Fiber photometry’s most compelling feature is its ability to capture neural activity synchronized to awake, 

freely moving behavior [1, 5]This advantage over other neural imaging techniques has prompted many 

studies utilizing fiber photometry in tandem with existing behavioral tests. These studies have yielded novel 

findings in a variety of neuroscience fields, including social behavior, addiction, and mood affect (e.g., 

depression, and anxiety).  

Social Behavior 

Linking neural activity to social behavior has historically been challenging due to the complex nature of 

social interactions and the lack of an adequate way to study them. Several brain inputs are responsible for 

the display of social behavior, including the prefrontal cortex, anterior cingulate cortex, insular cortex, 

periaqueductal gray, medial preoptic area, ventral tegmental area, and nucleus accumbens [100-102]. 

Choosing which brain region or circuit to target is advised by the specific type or aspect of social behavior 

of interest (i.e., maternal behavior, social interaction, aggression, mating, motivation, hedonics, motor 

execution) [102]However, fiber photometry has enabled robust investigation of these brain regions' unique 

role during naturalistic social behaviors, producing novel findings.  

Maternal behavior is an evolutionarily conserved expression of social behavior within altricial species. Yet 

despite the necessity of maternal behavior for offspring survival, the study of mother-infant interactions, 

the emergence of ‘maternal  instinct, and the neural correlations of such behavior are relatively under-

researched. However, it is important to recognize the existing research conducted in humans, nonhuman 

primates, and rodents. In humans, the impact that being a mother has on cognition and the brain has been 

investigated using a variety of assays, including questionnaires, endocrine/ hormonal analysis, and later 

life brain health outcomes (i.e., neurodegenerative diseases, stroke) [103, 104]. In non-human primates, 

maternal behavior is observed naturally, allowing primate mothers to interact with their offspring with little 

human interference [105, 106]. In comparison, rodent models can more intimately investigate the 

convergence of neurological and hormonal changes during parturition and early postpartum. Indeed, 

rodent studies have contributed valuable knowledge to the field, including the identification of important 

neural circuitry, the patterns and effects of hormonal and neurochemical levels, and the role that 

epigenetics plays in the expression of maternal behavior [15, 16, 107-110]. The study of postpartum 

depression and anxiety has also been studied in both humans and rodents, as understanding the 
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neurological correlations of aberrant caregiving can help us prevent and treat such conditions [111-115]. Yet 

very little is known about real-time neural activity while maternal behaviors occur. Research that utilized 

fiber photometry during mother-pup interactions has begun to illuminate how maternal rodent brains react 

to pup cues (i.e., pup vocalizations)[81] and how their neurons activate while performing maternal tasks 

(i.e., pup retrieval) [116, 117]. These three papers examined simple yet fundamental aspects of caregiving. 

The novel photometry data have validated and expanded our knowledge of neural dynamics, and the unique 

circuitry activated during motherhood.  

 

Table 1. Selected publications that utilized fiber photometry to study various types of social behaviors. 
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More classical studies of social behavior include examining social play among juveniles and aggressive 

behavior, and mating behavior following sexual maturity. These three displays of social behavior appear in 

nearly all mammals and are essential to species survival. Juvenile play is typically rewarding and introduces 

complex aspects of social dynamics, which are thought to help foster relationships and establish group 

norms [3, 118-120]. Social play in human children is particularly fascinating as patterns of play can be used 

as developmental markers and can predict later life aptitudes or disorders (i.e., autism spectrum disorder) 

[121-123]. In non-human primates, the study of social play revolves around finding connections between 

play behavior and the establishment of social bonds and order [124-126]. Conversely, rodent research 

focuses less on the cognitive implications of play and more on the rewarding aspects of social interactions. 

[127-129]. Aggressive behavior has also been studied in human, non-human primate, and rodent 

populations to understand the purpose and expression of such interactions, as well as which brain regions 

or hormones are responsible [17, 130-137]. Finally, the biological and cognitive components of sexual 

behavior have been of interest for generations and have provoked hundreds of studies in humans and 

rodents to understand and potentially optimize mating [138-145]. Thus, it’s no surprise that fiber 

photometry research in tandem with these aspects of social behavior (i.e., play, aggression, and mating) has 

recently emerged [14, 83, 146-148]These publications' findings have validated and challenged previously 

accepted ideas about the rewarding or aversive nature of specific social interactions.   

 

Addiction 

Addiction is a complex and multifaceted condition that affects millions of people worldwide. It is 

characterized by compulsive substance use or alterations in behavior despite negative consequences. 

Addiction is centered around the brain, where interconnected areas and neural circuits contribute to the 

development and maintenance of addictive behaviors. Having a comprehensive understanding of how 

addiction operates within the brain is essential for both effective treatment and prevention. An important 

aspect of addiction is the role of the reward system, specifically the mesolimbic pathway, which includes 

the nucleus accumbens, the pre-frontal cortex (PFC), and the ventral tegmental area (VTA), all of which are 

heavily involved in the processing of pleasure, motivation, decision-making, and inhibitory control. These 

brain regions are altered in addiction, which explains the compulsive nature of the behavior [19, 20]. The 

hippocampus and amygdala, typically implicated in memory and learning, play crucial roles by reinforcing 

addictive behaviors via associating substance use with positive feelings or stress relief [18]. The 

neurobiological changes that occur in these regions help explain why addiction is challenging to overcome, 

as it involves alterations in neural activity and long-term changes in brain circuitry. These brain changes 

reflect a process of learning and memory, often leading to appetitive drug-seeking behaviors [149, 150]. 

Furthering our understanding of the brain circuitry involved in addiction can enable researchers and 

clinicians to develop more targeted strategies, advance addiction treatment, and improve recovery 
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outcomes in the future. Below, we discuss a few publications that studied substance use with fiber 

photometry.  

 

Table 2. Selected Publications that utilized fiber photometry to study the administration of addictive substances. 

 

In a heroin-conditioned place preference procedure, dopamine signaling and activity in the nucleus 

accumbens (NAc) direct pathway drive entry into the heroin-paired context, while the indirect pathway is 
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involved in existing the context. O'Neal et al. (2022) used fiber photometry to measure temporally precise 

dopamine signaling and activity of direct-pathway (dMSNs) and indirect-pathway (iMSNs) medium spiny 

neurons (MSNs) during heroin-context entries and exits [151]. They compared the signals recorded during 

these events to baseline data in control and experimental groups, before and after conditioning. The study 

employed a 415 nm control and 470 and 560 nm excitation signals to monitor dMSN and iMSN Ca²⁺ and 

dopamine signals. Results showed that DA and dMSN Ca²⁺ signaling were stronger when entering the 

heroin-paired context and weaker when exiting, while the reverse pattern was observed for iMSN Ca²⁺ 

signaling. [151]. 

Using fiber photometry to monitor nucleus accumbens (NAc) nuclear Ca²⁺ dynamics, Saint-Jour et al. 

(2025) found that D1R medium spiny neuron (MSN) Ca²⁺ signaling significantly increased approximately 

5 minutes after cocaine injection, compared to saline-injected controls. [152]. This increase in activity 

continued to rise until it plateaued between 10 to 20 minutes post-injection. These results demonstrate that 

cocaine induces rapid and sustained increases in Ca²⁺ levels within D1R MSNs [152]. 

The effects of different drugs on midbrain dopamine (i.e., VTA) and serotonin (i.e., DRN) receptor activity 

were examined by tracking Ca²⁺ signaling in response to varying doses of heroin, nicotine, cocaine, and 

MDMA [153]. In the case of heroin, dopamine receptor Ca²⁺ signaling increased rapidly and remained 

sustained for up to an hour. At the same time, serotonin receptors showed significant increases in Ca²⁺ 

signals at median and high doses. This increase in Ca²⁺ signaling was associated with hyperactive locomotor 

behavior following a similar temporal pattern in dopamine and serotonin receptors. [153]. Nicotine induced 

a rapid spike in dopamine receptor Ca²⁺ signaling at all initial doses, followed by a brief suppression and  

subsequent rebound to elevated levels with higher doses. Unlike heroin, however, nicotine did not increase 

locomotor activity [153]. Cocaine administration led to dose-dependent decreases in both dopamine and 

serotonin receptor Ca²⁺ signaling, with a corresponding increase in locomotor hyperactivity [153]. Finally, 

MDMA induced a slow but sustained decrease in Ca²⁺ signals in both dopamine and serotonin receptors, 

with serotonin receptors showing a stronger decrease. MDMA had only a small effect on locomotor activity 

[153]. 

Addiction and withdrawal from substances like morphine and cocaine lead to significant changes in brain 

regions involved in reward and motivation. Jiang et al. (2024) explored the impact of morphine withdrawal 

on dopaminergic neurons, showing that chronic morphine use disrupts mitochondrial Ca²⁺ transport, 

resulting in mitochondrial fragmentation and reduced Ca²⁺ event frequency. These changes were measured 

using mitochondria-targeted Ca²⁺ sensors (Mito-GCaMP) and fiber photometry to track fluorescence 

signals at 470 nm, highlighting withdrawal-induced impairments in intracellular signaling [154]. In 

contrast, Tan et al. (2024) used fiber photometry to monitor Ca²⁺ dynamics in the ventromedial ventral 

pallidum (VPvm) during cocaine withdrawal. They found increased Ca²⁺ activity in response to drug-related 

cues, suggesting a role in encoding motivational significance during abstinence. [155]. While both studies 
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utilize fiber photometry to capture real-time neural activity, they reveal distinct patterns of Ca²⁺ signaling 

across different brain regions and drug types, highlighting the technique’s versatility in revealing the varied 

neurobiological effects of withdrawal. 

These studies illustrate the complex and dynamic neural processes that underlie addiction, from initial drug 

exposure to withdrawal and relapse. Advanced techniques such as fiber photometry and calcium imaging 

enable researchers to capture real-time, cell-specific activity within key brain regions involved in reward, 

motivation, and decision-making. As this field advances, such insights will be critical for informing the 

development of more precise and effective interventions for substance use disorders. 

 

Mood Affect 

Fiber photometry has helped elucidate functional networks in the context of mood affect, particularly 

depression and anxiety. For example, activating specific receptors in the basolateral amygdala (BLA), a 

region known to be involved in anxiety [156-158], has been shown to produce differential anxiolytic effects 

in mice. Fiber photometry revealed how two specific circuits connecting the BLA with the prefrontal and 

insular cortices are organized and function, highlighting the importance of precise mapping of drug 

interactions while offering potential therapeutic targets [159]. 

Increased activity of glutamatergic neurons in the BLA is associated with depression-like behaviors, and 

their inhibition has been shown to alleviate such behaviors [160]. Using fiber photometry, researchers have 

been able to monitor the response of GABAergic neurons in the BLA of mice to stressful situations in real 

time. These neurons have an anxiolytic effect when active, and their activity was found to be reduced during 

tail suspension and chronic social defeat, common ways to model depression in animals [161, 162]. Another 

study built upon previous findings of increased acetylcholine (Ach) levels in both human patients with 

depression and animal models of depression [163, 164]. Using fiber photometry in conjunction with a 

genetically encoded sensor to monitor Ach levels, they found that higher Ach levels in the medial prefrontal 

cortex (mPFC) were linked to learned helplessness - a behavior resembling depression. Furthermore, 

pharmacologically increasing Ach levels strengthened the effect [165].  

However, studying the ontology and neural correlations of depression and anxiety go hand in hand with the 

development of treatments for such mood disorders, yet the mechanism of action of antidepressants are, to 

this day, not fully characterized and hotly debated [166-169]. Monoamine reuptake inhibitors are effective 

for many patients, though the cause of delay in clinical onset is unknown [166]. Fiber photometry was used 

in one study to monitor the long-term effect of common and novel antidepressants on mPFC glutamatergic 

neuron activity in a mouse model of depression [170]. A reduction in depression-like behaviors coincided 

with increased activity in the mPFC. In another study using fiber photometry, the effects of fluoxetine, a 

selective serotonin receptor inhibitor (SSRI), and duloxetine, a selective norepinephrine reuptake inhibitor 

(SNRI), were recorded after onset of treatment [170]. The effects of duloxetine were apparent sooner than 
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fluoxetine, possibly owing to an increase in dopamine levels in the mPFC as suggested by Li et al., [171]. 

Dopamine’s role in depression was further demonstrated in research using non-invasive brain stimulation. 

Fiber photometry was used to track dopamine activity in the ventral tegmental area (VTA), showing that 

depression-like behavior was linked to lower activity [172].  

 

Table 3. Selected Publications that utilize fiber photometry to study anxiety, depression, and the effects of various kinds of 

antidepressant treatments. 

 

In addition to the classic SSRI and SNRI antidepressants, there has been a recent interest in the 

antidepressant effects of the N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine [173-178]. 
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Fiber photometry has proven useful in determining the brain regions and neurotransmitters involved in 

ketamine’s depression-alleviating effects. Serotonin is arguably the most widely researched 

neurotransmitter implicated in depression [179] and was found to increase in the mPFC after a single 

injection of ketamine, which was correlated to a decrease in depression-like behavior in mice [180]. 

Interestingly, even when a gene responsible for serotonin synthesis was removed [181], ketamine still had 

an antidepressant effect, suggesting serotonin modulation might not be the underlying mechanism [180]. 

Significantly, ketamine also affects the dopaminergic system, providing another route for study [182, 183]. 

Fiber photometry has been employed to address previous studies’ poor temporal resolution [184] and 

explore the varying effects of ketamine enantiomers [185]. One study with socially isolated mice showed 

that (R)-ketamine increased activity in the anterior insula [186], a region involved in social and emotional 

awareness [187, 188]. The increased activity occurred during social interaction and was not observed for 

(S)-ketamine [186]. This suggests (R)-ketamine as a possible treatment for social withdrawal symptoms, 

which are predictors for depression [189-191].  

These studies demonstrate that fiber photometry’s ability to record neural activity in freely moving animals 

helps bridge the gap between molecular and behavioral research in mood affect. Importantly, fiber 

photometry has confirmed previous findings and challenged others, ultimately increasing our 

understanding of the neural correlation behind depression and anxiety. Thanks to its low barrier to entry, 

we can expect fiber photometry to continue to illuminate the networks involved in mood disorders and will 

highlight the mechanisms behind traditional and novel therapeutic pharmaceuticals.  

 

 

CONCLUSION 

 

The divergent evolution of fiber photometry has aided its application within a variety of fields. Here we 

discussed how fiber photometry has built upon existing neural techniques and has been implemented in 

tandem with others to expand our capabilities of studying the brain. Additionally, we discussed fiber 

photometry’s applications within the fields of social behavior, addiction, and mood affect. These three fields 

share an association with the reward and motivation circuit and the circulation of dopamine; however, fiber 

photometry has been used to study other neural networks and neurotransmitters beyond this. From its 

inception as a calcium indictor to its most recent adaptations, fiber photometry has revolutionized how 

researchers study specific brain regions and circuits. To this end, this technique sits at the crux of 

neuroscience research and serves as both a steppingstone from early forms of neural imaging towards even 

greater scientific discovery, and as a junction to connect and enhance existing techniques.  
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